129

A Study of a Simple Generalized
Transition Network Parser for
the Japanese Language (I)

Akira Mikami

Abstract

This paper presents a parsing system for the Japanese language. The JPARS
system applys a Generalized Transition Network parser to a portion of the
grammar of the Japanese language. Its grammatical description is focused on
syntactic concepts. It is hoped that the JPARS can be elaborated by further
research and used by learners of the Japanese language to test the accuracy
of their syntactic knowledge. '

1.0. Intreduction

The foundation of the field of Computational Linguistics was laid in the 1950’s
right after the emergence of computers. In the field of natural language understanding,
intelligent computer systems such as ELISA, HAL, Eo-HAL, PARRY and K. M. Colby’s
interviewing program have been constructed [Allen, 1987; Borden, 1987]. The majority
of these have been built on the concept of Augmented Transition Network [ATN]
parsing [Wood, 1969]. The JPARS system uses a generalization of the basic ATN
formalism.

The remainder of this paper will be organized in the following sections: 2.0 an
overview of natural language processing, 3.0 the features of Generalized Transition
Networks [GTNs], 4.0 the Japanese Language Parsing System, 5.0 a discussion of
Japanese grammar structure which is relevant to the program, 6.0 a general summary
and conclusion, and 7.0 further research. (5.2, 6.0, 7.0 and references will be dealt
with in the continuing paper.)

2.0. Natural Language Processing
Natural languages are the languages used by people in the course of their daily
affairs, such as English and Japanese. In other words, natural languages are human
languages. The word “natural” is used in contrast with “artificial.” Musical notations
and computer programming languages are considered to bé artificial languages.
According to Tennant [1981] there are two reasons to research natural language
processing. Firstly, computers that can use natural languages could be useful tools.

130

Usually in order to manipulate computers, people have to know a computer language.
If computers could be used without learning the nuances of a programming language,
computers would be more accessible to people. People would be freed from the
annoyance of learning a programming language. Secondly, natural language research
will increase our understanding of how human languages work. Without a precise
natural language processing system, flaws, inconsistencies and areas of incompleteness
in a theory might be left unnoticed.

Already in the 1950’s, a strong interest in using computers for translating text
from one language to another existed. The United States federal government funded
the research heavily. As a result of the enthusiasm of the federal government and
researchers in machine translation, research began on translating Russian, German,
and French into English. A similar effort was under way in the Soviet Union and in
Europe.

In the 1960’s researchers received great help from advances in computer tech-
nology. Natural language processing systems are strongly dependent on memory. Since
the sixties, researchers enjoy a virtual address space of more than 1 billion words,
a six-order of magnitude increase over earlier model computers. Also a programming
language which is well adapted to building a natural language processing system
emerged in the late 1950’s; that language is LISP [the LISt Processing language].

Since then natural language processing has been thought as an interdisplinary
field drawing upon linguistics, Artificial Intelligence [AI], philosophy, psychology,
and the neural sciences.

3.0. Parser grammar .

There are reasons why natural languages can be processed by computer programs.
In its written form it is composed of linearly arranged discrete entities that occur
only in particular combinations. [Sager, 1981] For this reason a grammar can be
used in a procedure to recognize the syntactic structure of sentences.

Two things must be considered to examine how the structure of a sentence can be
computed. They are the grammar [or a formal specification of the structures
allowable in the language] and the parsing technique [or the method of analyzing
a sentence to determine its structure according to the grammar].

There are three types of grammar which have been used in natural language
processing; Context-Free Grammars, Recursive Transition Networks, and Augmented
Transition Networks.

3.1. Context-Free Grammars

Context-Free Grammars [CFGs] are grammars consisting entirely of rules of
the form “<symbol> «— <symbol>,.... <symbol>_” for n>=1 or of the form
“<symbol> —> <symbol>,.... <symbol>_” for n>=1. The former form is used

131

for bottom-up parsing and the latter for top-down parsing. [Allen, 1987]

This grammar seems plausible but it is clearly limited; for example, there is no
mechanism for marking “dogs” as the plural of “dog.” [Loritz, 1987]

3.2. Recursive Transition Networks

A simple parser can be modeled after the transition network formalism. In
figure 3.2., the parsing begins at node S. The first word is tested on the first are.
If it satisfies the conditions on the are, the arc is taken, the word is consumed, and
the parsing goes to the next node. Otherwise, if there are more than one arcs leaving
the node, the next arc is attempted. If all the words in a sentence are consumed
and the parsing reaches the last node, the last arc performs a (SEND)! and the
sentence is accepted by the grammar that the network represents.

Figure 3.2. RTN diagram

In the course of the parsing, a representation of the structure of the sentence
is obtained. When the words in the sentence are consumed, the appropriate arc assigns
the word being consumed a grammatical function. For example, the word consumed
on the verb arc of figure 3.2. is the verb of the sentence. This representation of the
structure of a sentence is displayed in the form of a parse tree. |

As the grammar gets bigger, repeated operations in the grammar are made into
subroutine calls [i.e. routines or networks called by another routine or subnet]. The
noun phrase subroutine is called by (SEEK NP), and when the parsing in the noun
phrase network is done, it (SEND)s back to the routine which performed the (SEEK
NP). Thus more than one noun phrase network does not have to be built in the .
program. This contributes to the economy of the program.

Because subroutine networks are called repeatedly, these transition networks are
called Recursive Transition Networks [RTNs].

RTN grammar uses several networks to represent the grammar. As a result, it
is easy to write and understand. To change the rules concerning the noun phrase,
instead of looking at all networks for noun phrases, only one NP network needs to
be examined.

3.3. Augmented Transition Networks
Augmented Transition Networks [ATNs] are RTNs with two mechanisms added
to facilitate in handling word order changes, insertions, and deletions. The two

132

mechanisms are the use of registers in recognition, and the addition of arbitrary
conditions on the arcs. [Tennant, 1981]

The use of registers is extended to enable storing condition flags and to permit
holding temporary structures in memory to facilitate their relocation in underlying
structure. The registers, set through conditions and actions on the arcs of the networks
during parsing, will be tested to see if a certain condition is already achieved. ‘These
registers, in another words, hold features and fragments of the sentence being parsed.

The addition of arbitrary conditions on the arcs extends the condition checking
beyond being dependent only on the current state and the next word or phrase in
the sentence. \

An ATN grammar was introduced by Thorne et al. [1968] and Bobrow and Fraser
[1969]. Their model was elaborated by William Woods [1969]. [Bates, 1978].

In ATN parsing, if an arc is taken and later proves not to lead to a successful
parse of the sentence, the parser backs up to the last choice point and tries an
alternative choice. The backing up, however, is not economical if all the arcs taken
before have to be reparsed. So if a subnet is successfully parsed, a well-formed flag
is set to true and this well-formed subnet will not be parsed again. for efficiency’s
sake. Also the order of the arcs between two nodes should be arranged so that the
most economical arc is taken first.

ATN grammars have proved to be flexible, easy to write and debug, able to handle
a wide variety of syntactic constructions, and easy to interface to other components
of a total system.

3.3.1. Function in ATNs

Just like RTNS, ATNs have arcs and nodes. Each arc has tests and actions for
the arc. There are several types of arcs which have different functions. A (CAT)
arc is the arc which tests if the current word belongs to the syntactic category. If the
arc is taken, the word is consumed and parser goes to the next node.

A (JMP) [jump] arc takes the parser to the next node without consuming a
word. «

A (SEEK) arc is the arc which tests if several words starting from the current
word belong to the syntactic subnet. If the subnet is satisfied, the several words are
consumed in the subnet and the subnet (SEND)s the parser back to the original
network. In other words the parser stores the current information in the stack and
after the subnet (SEND)s the parser back, the tsack is popped and the parsing is
continued. After coming back to the original arc, the parser (JMP)s to the next node.
[The words are already consumed in the subnet. The original arc does not consume
any words.]

An arc can utilize the formerly parsed structure of the sentence and check the
current condition. Even if the grammatical category is satisfied, if the other tests are

133

not satisfied, the arc may not be taken. , ‘

An arc also stores information about sentence structure into the registers in
order to use it on later arcs. If a sentence is passive, this information is stored in
the registers when the parser parses the verb. The information will be used later. For
example, even if the parser meets the phrase “by someone” in course of the parsing,
unless the parser previously met “be 4 past participle” structure, the phrase may not
be taken as a passive subject.

3.3.2. The GTN functions in Parlisp

Parlisp is a Lisp environment for building Generalized Transition Network
[GTN] parsers. Unlike most ATN parers, GTN parsers are capable of both top-down
and bottom-up, left-to-right and right-to-left, and depth-first and breadth-first analyses.
In particular, JPARS deviates from most ATN parsers by performing right-to-left
analysis. The GTN system in Georgetown University is constructed in TLC Lisp.
Parlisp provides utilities for building GTN parsers; researchers can build their
grammar without worrying about the minute functions of GTNs. By taking advantage
of this GTN environment the JPARS system was efficiently constructed and tested.

4.0. The lexicon

~ The lexicon contains several grammatical features. The first feature is parts
of speech, which is mandatory. This lexicon contains nouns, demonstrative adjectives,
particles, two types of verbs, three types of adjectives, auxiliary verbs, and conjunc-
tions. The other features are optional. The second feature is the form of verbs and
adjectives. This feature will be discussed later. The third feature is information on
how words are connected. The fourth feature is case grammar information. Although
this system is not fully equipped to use case grammar, this system introduces case
grammar analysis to overcome some parsing problems as Hellwig [1987] suggests.
The other features help analyze negative, interrogative, passive sentences.

The lexicon of this system is included in the program. As the lexicon is expanded,

the lexicon will need to be stored in a separate file.

4.1. The form of verbs

The Japanese language has inflected forms of verbs, adjectives, and auxiliary
verbs. McClain [1981] categorizes these forms into six groups; negative base, con-
tinuative base, conclusive & attributive base, conditional base, imperative base, and
tentative base. Conventional Japanese grammar books describe these six bases in a_
different way ; negative & tentative base, continuative base, conclusive base, attributive
base, conditional base, and imperative base. This system uses seven. The negative
base is called FORM M [after the Japanese term “Mizenkei”], the continuative base
FORM Y [from “renYookei”], the conclusive base FORM E [from “Ending”], the

134

attributive base FORM T [from “renTaikei”], the conditional base FORM K [from
“Kateikei”], the imperative base FORM R [from “meiReikei”], and the tentative base
FORM S [from “Suiryookei”].

4.2, Verbs

McClain [1981] divides verbs into three categories according to inflected forms:
vowel-stem verbs, consonant-stem verbs, and irregular verbs. Conventional Japanese
grammar divides verbs into four categories; “5 dan katuyoo” verbs, “kami 1 dan
katuyoo” verbs, “simo 1 dan katuyoo” verbs, and irregular verbs. Because Japanese
syllabaries are unable to represent consonants without their accompanying vowels,
consonant-stem verbs are further divided into two; “kami 1 dan katuyoo,” and “simo
1 dan katuyoo.” “Kami 1 dan katuyoo” has the vowel [i] affixed to the stem, and
“simo 1 dan katuyoo” has [e] affixed. In this lexicon, vowel-stem verbs are coded as
V1 and consonant-stem verbs are coded as V2. There are only two irregular verbs;
“kuru,” or “come” and “suru,” or “do.” Although these verbs are not coded in this
lexicon, kuru should be coded as V2, and suru as V1 from the type of following
auxiliary verbs.

Japanese verbs have inflection, but lack conjugation. Verbs do not change accord-
ing to person, number, or gender.

4.3. Adjectives

~ Conventional Japanese grammar has two types of adjectives; ‘“adjectives,” and
adjectival verbs. Both types behave differently from adjectives of the English lan-
guage. They function without being accompanied with verbs. In other words, when
they are positioned as predicates, the copulae are excluded.

McClain [1981] categorizes adjectival verbs as copular nouns which are 1) modified
by adverbs, not by adjectival words, 2) not used as independent words in sentences
but always followed by copulas, and 3) never used as the subjects or the direct
objects. It seems reasonable, however, to classify the adjectival verbs as adjectives.
In this lexicon, conventional adjectives are coded as Al, adjectival verbs as A2, and

a few adjectives which are categorized as both “adjectives” and adjectival verbs are
coded as AS.

4.4, Case grammar

Case grammar is coded for nouns, particles, verbs, and adjectives. Fillmore
[1968] suggested that the deep case system consists of semantic roles which nouns
play in the meaning of sentences. The JPARS system is strictly grammar based.
Deep coding of case grammar was avoided. Case grammar, however, is a powerful
tool for a parser. For this system, a partial implementation of case grammar could
not be avoided. This system uses agents, patients [objects], recipients and locatives

135
following Cook [1989].

4.5. Others

Interrogative sentences have both interrogative particles and interrogatives in
the Japanese language. Interrogative particles are crucial, but interrogatives are
optional. Interrogativity is coded in both.

Interrogative sentences are not different in word order from declarative sentences.
Even if interrogatives are used, the word order remains the same.

(pkg "sinpl" :}
: t 1t Lexicon ¥t X

(progn

(putprop 'simpl:ano 'features '((pos dem)})

(putprop 'simpl:inu 'features '({pos n})}}

(putppop ‘sinpl:dare "features '{(pos n}{stype qu}})

(putprop 'simpl:anata "features '{(pos n)})

(putprop 'simpl:georgetown ‘features '((pos n)(sens place}})

{putprop 'simpl:teki *features '{({pos n){sens time)))

{putprop 'simpl:ha ‘features '((pos part)(tp t)})

(putprop 'sispl:ga "features '({pos part}(ag t}})

(putprop 'simpl:wo "features '({pos part}(pt t})))

(putprop ’'simpl:ka 'features '((pos part)(form e)(stype qu}})

(putprop 'simpl:ni "features '{(pos part)(rcp t)(pvs t)(lc t)(adv time)))
{putprop 'simpl:de "features '((pos part}(adv place}}) '

(putprop 'simpl:ino 'features '{(pos part){ps t}})

(putprop "simpl:hoe "features '((pos v2}(fors mi{form y)(case ((ag t)(pt t}})))
(putprop 'simpl:hoeru ‘features '({pos v2}(form e){form t}{case ((ag t)(pt t}}}})
{(putprop 'sispl:hoere "features '{{pos v2)(fors k}{case{(ag t){pt t}}}})

(putprop 'simpl:hoero "features '{{pos v2)(fora r){case{{ag t}(pt t}}}}}

{putprop 'simpl:da "features '{(pos vli)(form e){case({ag t}{pt t}}})}

(putprop 'simplinoni "features '({pos conjn){add t}))

(putprop 'simpl:ba 'features '(({pos conjn){add k}))

(putprop 'simpl:toe "features '((pos conjn)(add e)))

{putprop 'simpl:temo "features '((pos conjn}{add y}))

(putprop 'simpl:ta "features '((pos aux)(form e}{form t)(add y)))

(putprop 'simpl:tara *features '{(pos aux)(form k)(add y)})

(putprop 'simplitaro "features '((pos aux)(form m}(form s)(add y}))

{putprop 'simpl:u "features '({pos aux}(form e)(add s}})

{putprop 'simpl:rareru 'features '((pos aux)(form e}(form t)(add n)(stype pvs){ad v2}))
(putprop 'simpl:rare 'features '({pos aux}(form n){form s)(form y)(add a}(stype pvs){ad v2}})
(putprop 'simpl:rarere "features '{(pos aux){form k)(add n)(stype pvs)(ad v2)))
{putprop 'simpl:kawaikaro 'features '({pos alj(form n){case({ag t}})})

(putprop 'simpl:kawaikat "features '({pos al}(form y)(case((ag t}}}})

(putprop 'simpl:kawaiku 'features '({pos al)(fors y}(case((ag t)}})}

(putprop 'simpl:kawaii 'features '((pos al)(form e){form t)(form k)(case((ag t)))})
(putprop 'simpl:kirei 'features '((pos al}{form s)(case((ag t}})))

(putprop 'simpl:kireidaro 'features '{(pos al}{form m}(case((ag t}})))

(putprop 'simpl:kireidat "features '((pos a2){form y}(case((ag t}}}})

{putprop 'simpl:kireide 'features '({pos al)(forn y}(case({ag t)}}})

(putprop 'simpl:kireini ‘features '((pos a2){form y)(case({ag t}})})

(putprop 'simpl:kireida 'features '{(pos a2)(form e} (case{(ag t)}})}

(putprop 'simpl:kireina 'features '(({pos a2)(form t)(case((ag t)}}})

{putprop 'simpl:kireinara 'features '((pos al)(fora k)({case((ag t}}}})

Listing 4.1. The sample lexicon of the JPARS

136

Negative sentences have only negative particles or negative adjectives. For
further elaboration, the system includes the logic which accepts negative adverbs,
which need agreement with the particles and the adjectives.

Passive sentences do not require changes of word order in Japanese. Particles,
however, function differently in passive sentences. Passive auxiliaries are coded in
this lexicon.

In order to facilitate the parsing of adverb phrases, semantic information,
whether a noun has time or place sense, is also coded.

5.0. The JPARS system

The characteristics of the Japanese language are 1) there are no articles, 2) nouns
usually do not have special plural forms, 8) pronouns are not treated differently from
nouns and are omitted if they can be understood from the context, 4) verbs do not
have special forms to indicate person or number, 5) adjectives are closely related to
verbs, and take endings according to their tense and mood, 6) there are no cases for
nouns and pronouns; particles are used to indicate the relationships between words
instead, 7) basic word order is SOV, although the order is quite flexible, 8) con-
junctions come at the end of the clause they govern, 9) subordinate clauses must
come first in the sentence, and 10) special forms are used to indicate shades of
courtesy, respect, and formality. [Bleiler, 1963]

The Japanese language is a left branching language. All modifiers are placed
before modified words. A lot of information on the structure of a sentence comes at
the end of each segment or phrase [“bunsetsu”]. The most important information on
the structure of a sentence is in the verb phrase. For this reason, JPARS parses
“backwards” from the end of the input sentence.

Although Sato [1988] says “an ATN-style parser which processes left-branching
language’s sentences backward from right to left, is also unrealistic,” the backward
parser is feasible. Firstly as is mentioned above the information needed to parse
comes at the end of each phrase, while the most important information comes at the
end of the sentence. Native Japanese speakers are told at school to speak the end of
a sentence clearly because it is the most important part.

Secondly human brains’ are not serial processors but parallel distributed processors
[Grossberg, 1983; Borchardt, 1988]. A sentence is not simply processed linearly

from the beginning of the sentence to the end, but also processed simultaneously.
‘ Processing a sentence from the beginning is also not different from processing it from
the end as far as a machine is concerned. A parser starts processing an input sentence
as a whole when the return key is pressed.

The Japanese language has a variety of forms to indicate shades of courtesy,
respect, and formality, but these are dependent on the relationship between a speaker
and a listener, a speaker and a referent, and so on. The JPARS only parses one

137

sentence at a time. As it is not given the luxury of using the context of the sentence,
it is not possible to take these human relationships into consideration. The parser
only parses sentences of neutral or normal politeness.

The JPARS uses the Japanese conventional transcription which is further
romanized to facilitate Parlisp environment. The Japanese conventional transcription
uses “wo” and “ha” for articles which are pronounced /o/ and /wa/ respectively. In
a phonetically precise spelling system, “shi,” “chi,” “tsu,” and so on should be used,
but the conventional transcription uses “si,” “ti,” “tu,” and so on. \

The parser does not have the ability to cut a sentence into words. Although a
Japanese sentence is usually written without spaces between words, to parse in the
JPARS words have to be already divided by spaces.

5.1. The GTNs of this system
There are three networks in the parser; the sentence network, the noun phrase
network, and the relative clause ntwork.

5.1.1. Sentence Network

The sentence network [figures 5.1.1.] starts with the node S/ and ends with the
node S/S.
Node S/:ARC 1. Proceeding from the end of the input sentence, the node S/ checks
if the sentence ends with a particle. If it does, the particle is registered. If the
particle indicates that the sentence is a negative, interrogative, and/or passive sentence,
the information is also registered as STYPEXNG, STYPEXQU, and STYPEXPV
[Sentence TYPE in auXiliary NeGative, QUestion, and PassiVe). After taking this
arc, the parser goes back to the node S/.

CAT
CONJ

Figure 5.1.1. The diagram of the Sentence Network

Node S/:ARC 2. The node S/ then checks if an auxiliary verb is found. Because
Japanese auxiliary verbs are inflected, the inflected forms have to agree with the

grammatical context. If an auxiliary verb is detected, the form of the auxiliary
verb is checked to see if it is an ending form. If a sentence ends with an auxiliary
verb or an auxiliary verb folowed by a particle, the auxiliary verb has to be the
ending form. If a second auxiliary verb is detected, the parser checks the agreement

138

between the two auxiliary verbs. The second auxiliary verb [which is closer to the
beginning of the sentence in this parser] must be the correct form to connect to
the first auxiliary verb [which is closer to the end of the sentence]. For example, a
negative auxiliary verb “nai” has to be preceded by (FORM M), so the combination
“rare nai” is grammatically correct, but “rareru nai” is incorrect. If the form is
correct, this information is stored as (AGREE) information. Just like particles, the
information about the word itself and negativity, interrogativity, and passivity is
stored in the registers. This arc also goes back to the node S/.

Node S/:ARC 3. If a verb is found, the parser checks the form of the verb.
If the sentence ends with the verb or a particle, the verb has to be in the ending
form. If the sentence ends with an auxiliary verb, the verb form has to meet the
requirement of the auxiliary verb. For example, the form M of the verb “hoeru”
[bark] is “hoe”. So “hoe nai” is correct, but not “hoeru nai.” Again the information
of the verb is stored. The parser goes to the next node S/tail.

Node S/:ARC 4. Second, an adjective may precede an auxiliary verb or a particle.
The Japanese adjectives behave differently from those of English. The Japanese
adjectives are more like verbs, and do not have to be preceded by verbs. In node S/,
an adjective is sought only when no verb is found. All procedures are almost the

same as the ones for a verb.

If no verb or adjective is found, the parsing fails.
Node S/tail:ARC 1, 2, 3, and 4. The node S/tail invokes the NP network. If an
NP is found, the parser assigns the NP to grammatical functions of NPs; topics,
agents, patients, recipients, adverbs, and locations. To facilitate backing up the parser,
NP seeking is done in four arcs. This allows a NP to be assigned to every possible

function.

Node S/tail:ARC 5. The parser proceeds to the next node S/CHECK.

Node S/CHECK: The node S/CHECK checks if the NPs fit into the NP slots of
the verb or the adjective. The Japanese language does not have to have all the case
slots for the verb or the adjective filled, but if an NP exists, the verb or the adjective
must have a case slot to accept that NP. [“Case slot” is derived from “frames” and
their “slots” in AI]. In other words, even if a verb has a case of an agent and a
patient, NPs for an agent and a patient do not have to exist, but if an agent NP and
a patient NP exist, the verb or the adjective has to be coded for the cases of agent
and patient. Every verb or adjective has its own slots for NPs, and NPs have to

fit into the slots. Empty slots, however, are acceptable. The parser proceeds to the
next node S/S.
Node S/S:ARC 1. The parser looks for a conjunction. If it finds one, it clears the
register, and returns to the node S/.
Node S/S:ARC 2. If no word to parse is left, the parsing ends.

If the parsing is successfully completed, the parser displays “OK” on the screen.

139

All final register information in this sentence network is stored in TREE. After
parsing, PP TREE will display all this information.

5.1.2. Noun Phrase Network
Node NP/:Arc 1. The node NP/ checks if a particle is detected. The particle
attaching to a noun is different from the one attaching to a verb or an auxiliary verb.

The particle plays a very important role in deciding if a noun is a topic, an agent, a
patient, a recipient, an adverb or a location. When the particle is found, the particle
is registered. | ‘

Node NP/:Arc 2. After registering a particle, the node NP/ also checks if a noun
is detected. If no noun is found, the NP network fails. Otherwise the parser proceeds
to the next node NP/N.

Node NP/N:Arc 1. For program efficiency, if no word to parse is left, the parser

immediately goes to the node NP/NP without seeking another modifier.
Node NP/N:Arc 2, 8, 4, and 5. The node NP/N checks if a demonstrative adjec-
tive, an adjective or adjectives, a possessive noun phrase, and/or a relative clause

optionally modify the noun. All modifiers found are also registered.
Node NP/NP: In the node NP/NP, the register information obtained in NP network
is sent up to the original network to be utilized for further parsing.

Figure 5.1.2. The diagram of the Noun Phrase Network

5.1.3. Relative Clause Network

The relative clause network [figure 5.1.3.] is similar to the sentence network. The
differences are 1) a particle is not added at the end of the clause, 2) the particle “ni”
is used for a patient, 8) the possessive particle “no” is used for an agent, and 4) the
node RELC/RELC does not take a conjunction into consideration. The last difference
is only for the ease of programming this parser. The Japanese language does not
have relative pronouns. As the consequence, it is semantics which decides if a clause
before a relative clause is a relative clause connected by a conjunction, or another

140

sentence connected by a conjunction. This parser is a grammar parser which does not
check any semantic aspect. Because of this restriction more than one relative clause
connected by a conjunction is not allowed in this parser.

Figure 5.1.3. The diagram of the Relative Clause Network

The final information stored in this relative clause network is stored in TREER.
To get this TREER after parsing, PP TREER will give the content.

======= % X THE GRAMMAR * X
'START/ ’(

(1 (t (seek ’'s/))

t))

X Sentence Level ¥ % X X
ss/ 1(
(and (newcat ’part)
(null (getr ’'part))
(formcheck ¥ 'form ’e))

(if (equal (getfeature ¥ 'stype)
(setr 'stypexng ’'ng))

(if (equal (getfeature ¥ ’'stype)
(setr 'stypexqu 'qu))

(setr 'part %)

(to 's/)

(newcat ’aux)
(or (and (null (getr 'aux))
(formcheck * 'form ’e))
(and (getr ’aux)
(checkagree)))

(if (equal (getfeature * ’'stype)
(setr 'stypexng 'ng))

(if (equal (getfeature ¥ 'stype)
(setr 'stypexqu 'qu))

(if (equal (getfeature ¥ ’stype)
(setr 'stypexpv ’'pvs))

(setr ’'agree (getfeature * 'add))
(setr 'aux %)
(to 's/)
{(or (newcat ’vl)
(newcat 'v2))
(or (and (null (getr ’'aux))
(formcheck * 'form ’e))
(and (null (getr ’'stypexpv))
(getr ‘'aux)
(checkagree))
(and (getr 'aux)
(checkagree)
(getr ’stypexpv)

'ng)

un)

'ng)
'qu)

‘pvs)

(equal (getfeature (getr ’aux) ‘ad)
(getfeature ¥ 'pos)))))

(setr 'tail %)
(to 's/tail)
(or (newcat 'al)
(newcat ’'a2)
(newcat 'al))
(or (and (null (getr ’aux))
(formcheck % 'form 'e))
(and (getr 'aux)
(checkagree)))

Zdefstate

(a
I

; X X X

(defstate

(1 (t

(a

(2 (t

(a

(3 (t

(a

(4 (t

(a

Listing 5.

(setr 'tail ¥)
1.4. The grammar of the JPARS

141

142

(to 's/tail))
)) N n

(defstate 's/tail ’(
(1 (t (or (newcat ’n)
-(and (and (newcat ’part)
(null (getfeature x ’form)))
(or (and (null (getr 'topic))
(getfeature % ’'tp))
{and (null (getr ’agent))
(getfeature « ’ag))
(and (null (getr ’'agent))
(getr ’stypexpv)
(getfeature ¥ ’pvs))
{and (null (getr ’'patient))
(getfeature * ’'pvs))
(and (null (getr ’'patient))
{(getfeature x 'pt)))))
(sendr ’tail)
(seek ’'np/))
(a {or (and (null (getr 'topic))
(getfeature (getr ’part) ’tp)
(setr ’topic (getr ’head)))
(and (getr ’'stypexpv)
(null (getr 'patient))
(getfeature (getr ’part) ’ag)
(setr ’'patient (getr ’'head)))
{and (null (getr ’agent))
(getfeature (getr ’'part) ’ag)
(setr 'agent (getr 'head)))
(and (getr ’stypexpv)
(null (getr ’'agent))
(getfeature (getr 'part) ’pvs)
(setr ’agent (getr ’'head)))
(and (null (getr ’'patient))
(getfeature (getr ’part) ’pvs)
(setr 'patient (getr ’head)))
(and (null (getr 'patient))
(getfeature (getr 'part) ’'pt)
(setr ’patient (getr 'head))))
(setr 'tailnt %*nt)
(jmp ’s/tail))
(2 (t (and (newcat ’part)
(null (getfeature % ’'form))
(null (getr ’'loc))
(getfeature * 'lc))
(seek ’'np/)
(equal (getfeature (getr 'head) 'sens) 'place))
(a (setr ’'loc (getr 'head))
(setr 'tailnt #¥nt)
(jJmp ’'s/tail))
(3 (t (and (newcat ’'part)
(null (getfeature % ’'form))
Listing 5.1.4. The grammar of the JPARS fcontinued]

(null (getr 'adv))
(getfeature * 'adv))
(seek 'np/)
(equal (getfeature (getr 'head) ’'sens) ’'time))
(A (setr 'adv (getr 'head))
(setr 'tailnt %xnt)
(jmp 's/tail))
{1 (t (and (newcat ’'part) '
{null (getfeature % 'form))
{null (getr 'rep))
(getfeature x 'rep))
(scek 'np/) ')
(a (setr 'rcp (getr 'head))
{setr 'tailnt #nt)
(jmp. 's/tail))
{5 (a (.jmp ‘'s/check) }
IRRRRRRRERRRRRRRRRERRR)

(defstate ’'s/check '(
(1 (t (or (if (and (getr 'topic) (null (getr 'agent)))
{setr 'agent (getr 'topic))

(if (and (getr 'topic) (null (getr ’patienf)))

(setr ’patient (getr ’topic))
(if (null (getr 'topic))
t
(and (if (getr ’'agent)
(get (getr 'tail) 'case 'ag) t)
(if (getr ’'patient)
(get (getr 'tail) 'case ’'pt) t)
(if (getr ’'rcp)
{get (getr 'tail) 'case 'rcp) t)
(if (getr 'loc)
(get (getr ’tail) ’case 'l¢) t))
(or (and (getr ’stypenng)
{equal (getr ’'stypexng)
(getr ’stypenng)))
(and (getr ’'stypenqu)
(equal (getr ’stypexqu) -
(getr ’stypenqu)))
(and (null (getr 'stypenng))

(null (getr ’'stypenqu)))))
(a (jmp ’'s/s))
)) NN
(defstate 's/s '(
(1 (t (newcat 'conjn))

(a (if (null treel)
(setq -treel (car regs))
(setq treel (append (car regs) treel)))
(setq regs nil)
(setr 'aux ¥)
(setr ’conjn %) .
(setr ’'agree (getfeature % 'add))

Listing 5.1.4. The grammar of the JPARS [continued]

143

nil)
nil)

nil)

144

(2 (t
(a

)) M)

(defstate

(1 (t
(a
(2 (t
(a
))
(defstate
(1 (t
(a
(2 (t
(a
(3 (t
(a
(4 (t
(a
(5 (t
(a
(6 (a
Listing 6§

(to 's/)
(null x)
(if (null treel)

(setq tree (car regs))

(setq tree (append (car regs) treel)))
send)
))))
¥ ¥ ¥ % Noun Phrase Level % % ¥ %

’np/ '(
(newcat ’part)
(or (null (getr ’part))
(and (getr ’'part)
(equal (getr ’agree)
(getfeature % 'form))))
(setr ’'part x)
(setr ‘’agree (getfeature * 'add))
(to "np/)
(newcat 'n)
(if (equal (getfeature % 'stype) ’'ng)
(setr ’stypenng ’'ng)) '
(if (equal (getfeature ¥ ’stype)
(setr ’stypenqu ’qu))
(if (and (null (getr ’'part))
(equal (string (getr 'tail)) "da"})
(setr ’part ’'simpl:wo))
(setr ’'head %)
(to 'np/n)
)1))
'np/n ’(
(null %)
(Jmp ’np/np)
(seek ’'relc/)
(setr ’'relc *nt)
(jJmp ’'np/n)
(null (getr ’dem))
(newcat ’'dem)
(if (equal (getfeature * ’stype) ’ng)
(setr ’stypenng ’'ng))
(if (equal (getfeature * ’stype) 'qu)
(setr ’stypenqu ’qu))
(setr 'dem x)
(to 'np/n)
(or (newcat ’al)
(newcat 'a2)
{newcat ’'a3))
(formcheck *x ’form 't)
(setr ’adj x)
(to 'np/n)
(newcat ’'part)
(getfeature * ’ps)
(to 'np/no)
(jmp 'np/np)
«1.4. The grammar of the JPARS [continued]

qu)

— — —

145

NN

(defstate 'np/no ’({(
(1 (t (newcat 'n))
(a (setr 'poss ¥)

: (to 'np/n)))
Y)Y M)

(defstate 'np/np '(
(1 (a (upr ’'part)
(upr 'head)
(if (getr ’adj) (upr ‘'adj))
(if (getr ’poss) {(upr 'poss))
(if (getr 'dem) (upr ’dem)) »
(if (getr 'stypenqu) (upr ’'stypenqu))
(if (getr ’'stypenng) (upr ’'stypenng))
(send)))
IDRRRN

H ¥ ¥ ¥ ¥ * ¥ ¥ Relative Clause ¥ x ¥ ¥ % x
(defstate 'relec/ '(
(1 (t (newcat 'aux)
(or (and (null (getr 'aux))
(formcheck * 'form 't))
(and (getr ’aux)
(checkagree))))
(a (if (equal (getfeature ¥ ’stype) 'ng)
(setr ‘'stypexng 'ng))
(if (equal (getfeature * ’'stype) ’'qu)
(setr ’'stypexqu 'qu))
(if (equal (getfeature % ’'stype) ’'pvs)
(setr 'stypexpv ’'pvs))
(setr 'agree (getfeature ¥ 'add))
(setr 'aux %)
(to 'relc/)))
(2 (t (or (newcat 'vl)
(newcat 'v2))
(or (and (null (getr 'aux))
(formcheck * ’form ’'t))
(and (null (getr 'stypexpv))
(getr ‘'aux)
(checkagree))
(and (getr 'aux)
{checkagree)
(getr 'stypexpv)
(equal (getfeature (getr 'aux) ’ad)

(getfeature ¥ 'pos)))))
(a (setr 'tail &)
(to 'relc/tail)))

(3 (t (or (newcat 'al)
(newcat. 'a2)
(newcat 'a3))
(or (and (null (getr 'aux))
Listing 5.1.4. The grammar of the JPARS [continued]

146

(formcheck ¥ ’form *t))

(and (getr ‘'aux)

(a (setr
{to
)) N

(defstate ’relc/tail

(checkagree)))

'tail &)
'rele/tail)

"

(1 (t (or (newcat 'n)

(and

(and (newcat ’'part)

(null (getfeature * 'form)))

(or (and (null (getr ’'topic))
{getfeature x ’tp))
(and (null (getr 'agent))
(getfeature % ’ag))
(and (null (getr 'agent))
(getr ’'stypexpv)
(getfeature ¥ ’pvs))

(and (null (getr 'patient))

(getfeature * 'pvs))

(and (null (getr ’'patient))

(getfeature % ’pt))
(getfeature ¥ ’ps))

(seek ’'np/)
(a (or (and (null (getr ’topic))

(and

(and

{and

(setr
(jmp
Listing 5.1.4.

(and

(and

{and

(and

(getfeature (getr ’'part) 'tp)
(setr 'topic (getr ’'head)))
(getr ’stypexpv)

(null (getr ’'patient))
(getfeature (getr ’part) ’ps)
(setr ’patient (getr 'head)))
(null (getr ’agent))
(getfeature (getr ’'part) ’ps)
(setr ’agent (getr ’'head)))
(getr ’'stypexpv)

(null (getr ’patient))
(getfeature (getr ’part) 'ag)
(setr ’patient (getr ’head)))
(null (getr ’agent))
(getfeature (getr ’'part) ’ag)
(setr ’'agent (getr 'head)))
{(getr ’'stypexpv)

(null (getr 'agent))
(getfeature (getr ’part) ’'pvs)
(setr ’agent (getr ’'head)))
(null (getr ’'patient))
(getfeature (getr ’part) ’pvs)
(setr ’'patient (getr 'head)))
(null (getr ’'patient))
(getfeature (getr ’part) ’pt)
(setr 'patient (getr ’head))))

'tailnt #%nt)
'relc/tail)

The grammar of the JPARS [continued]}

)

)

(2 (t
(a
(3 (t
{a
(1 (t
{a
(5 (a
))
(defstate
(1 (t

{and (newcat ’'part)
(null (getfeature % 'form))
(null (getr 'loc}))
(getfeature ¥ 'lc))
(seek ’'np/)
(equal (getfeature (getr 'head) ’'sens) ’'place)
(setr 'loc (getr ’head))
{setr 'tailnt *nt)
(jmp 'relc/tail)
{and (newcat 'part)
(null (getfeature ¥ ’'form))
(null (getr 'adv))
(getfeature & 'adv))
(seek 'np/) :
{equal (getfeature (getr ’'head) ’'sens) ’'time)
(setr 'adv (getr 'head))
(setr 'tailnt ¥nt)
(jmp 'relc/tail)
(and (newcat ’part)
(null (getfeature ¥ ’'form))
(null (getr ’recp))
(getfeature * ’rep))
(seek 'np/)
(setr ’rcp (getr ’head))
(setr 'tailnt *nt)
(jmp ’'relc/tail)
(jmp ’'relc/relce)

IDRRDRRRY

'rele/rele '

for (if (and (getr 'topic) (null (getr 'agent)))

(setr ’'agent (getr 'topic))
nil)

(if (and (getr ’topic) (null (getr ’patient)))

{setr ’patient (getr ’'topic))
nil)
(if (null (getr ’topic))
t .
nil))
(and (if (getr 'agent)
(get (getr 'tail) 'case 'ag) t)
(if (getr ’patient)
(get (getr 'tail) ’'case 'pt) t)
(if (getr ’'rcp)
(get (getr 'tail) 'case ’'rcp) t)
(if (getr 'loc)
(get (getr ’tail) ’case 'lc) t))
(or (and (getr ’'stypenng)
(equal (getr ’stypexng)
(getr ’stypenng)))
(and (getr ’stypenqu)
(equal (getr ’'stypexqu)
(getr ’stypenqu)))

Listing 5.1.4. The grammar of the JPARS [continued]

147

148

(getr
(getr

(and (null
(null
(if (null treerl)
(and (setq treerl
(setq treer (car

(a

'stypenng))
'stypenqu))))

(car regs))
regs)))

(setq treer (append (car regs) treerl)))

(send)

)))))))))))
Listing 5.1.4.

The grammar of the JPARS [continued]

[The remainder of this paper will be continued.]

1. Parentheses are used in Lisp to delimit lists and function calls. Parentheses will
be used here and elsewhere to distinguish Lisp functions, function calls and lists.

Parenthesized English text will be enclosed in brackets [1.

